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1. Identification of C. elegans Metabolic Genes 
To annotate metabolic genes, we used information from four databases (KEGG, 
WormBase, UniProt and a published list of eukaryotic orthology groups named KOGs 
(Koonin et al., 2004)) and two KEGG-based databases developed in this study (myKEGG 
and myTree). Each resource was used to predict the nearest KEGG orthology groups 
(KOs) for each gene in the C. elegans genome (a list of C. elegans genes encoding 
20,519 proteins in KEGG). The predictions from different resources were both visually 
evaluated and converted to a numerical score for computational evaluations (Table 1). 
All predictions of gene-KO associations from all resources were combined using a 
custom pipeline called Systematic Annotation by manual CUration and Regression 
(SACURE) to give the final decision for each gene (i.e., determination of the KO, 
enzyme, and reaction, if available, based on convincing evidence). The resources used in 
this procedure are explained below. 

KEGG   
Available annotations of C. elegans genes were collected from KEGG database (date: 
June, 2014). Finding gene-KO connections was straightforward with this dataset as 
KEGG-annotated genes are directly connected to KOs. For computational purposes, the 
score data for each gene was represented by 1 for KOs associated with the gene (typically 
only one KO) and 0 for the rest (Table 1). 

WormBase 
Protein domain annotations were obtained from Wormmart (version WS220) and 
concatenated with gene descriptions downloaded from the WormBase website (from gene 
Overview sections using html download option) (September, 2014) to make a WormBase 
text string for each gene. To match these annotations with KEGG KOs, names of all KOs 
and all enzymes were downloaded from KEGG. For each KO, a list of all alternative 
names were formed by combining KO names and names of enzymes associated with the 
KO. For each gene, annotation in WormBase was compared to all KO names using a 
word matching algorithm. This algorithm gave scores from 0 to 1 for a match between a 
WormBase text string and every KO name, thus defining the score for every potential 
gene-KO association. If all words in a KO name were not matched in the WormBase text 
string, the score was always zero. Otherwise, the score was increased by 0.5 for every 
perfect word match and reduced by 0.1 for each character interruption between words in 
the annotation. Final score was obtained by normalizing all KO scores for a gene with the 
highest scoring KO (hence scores varied from 0 to 1; Table 1).  

UniProt 
Protein names, family annotations, and EC numbers were downloaded from UniProt 
(date: October, 2014) (Bateman et al., 2015) for every protein-coding gene in C. elegans. 
Two scores were obtained (Table 1). First, protein name and family annotations were 
concatenated to make a UniProt annotation text and scored as described above for 
WormBase. Secondly, if an EC number was available, gene-KO associations were 
established with KOs related to the EC with a score of 1, while all other KOs were scored 
0. 
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KOG 
The identifier for all eukaryotic orthology groups (KOGs) from (Koonin et al., 2004) that 
included a C. elegans gene were obtained from Wormmart (version WS220). For each C. 
elegans gene in a KOG, the name of genes from up to six other organisms (Homo sapiens, 
Drosophila melanogaster, Arabidopsis thaliana, Saccharomyces cerevisiae, 
Schizosaccharomyces pombe and Encephalitozoon cuniculi) in the same KOG were 
downloaded from the NCBI web page describing the KOG. Then these genes were cross 
referenced with KEGG to obtain KO associations if annotated and each KO connection 
established this way obtained a score of 1, while the rest of the KOs were scored 0 (Table 
1).  

myKEGG 
To determine an overall protein sequence score for every potential gene-KO association, 
we used Smith-Waterman (SW) scores between each C. elegans gene in KEGG and best 
matching genes in up to 3,073 KEGG organisms (organisms that do not have a gene with 
a score of 100 or higher are not provided by KEGG as this score indicates that sequence 
similarity is not sufficient for a match). The SW table of each C. elegans gene was 
downloaded from KEGG for best hits (BH) and reciprocal best hits (RBH) (i.e., two 
tables were obtained per gene). In addition to the best matching gene for each organism 
and the corresponding SW score, the SW tables indicate the KO to which the matching 
gene belongs, provided that the gene is successfully annotated by KEGG. Thus, when 
sorted with respect to a decreasing SW score, a visual inspection of these tables show the 
likely KO candidates for the query C. elegans gene based on which KOs are populated in 
highest scoring matches (i.e., at the top rows of the sorted table; see Figure 1A for an 
example). To simplify the dataset and to minimize false positive identifications, we used 
an SW score threshold of 190; matches below this threshold were considered 
insignificant and removed from tables. This threshold was based on KEGG annotations, 
where we found only two metabolic genes that were associated with KOs with SW scores 
<190 (out of 988 total based on association with a metabolic reaction).  

To translate our visual evaluation of SW tables into a computational algorithm, we 
devised a formula that scored KOs for each gene according to their relative proportion in 
top 10 (group A), top 100 (group B), and top 1000 (group C) best matching organisms 
(genes) in these tables. Given a candidate gene-KO association for a gene, the query KO 
was scored in each one of these groups and a combined score was obtained for the KO 
based on Equation 1, where, i indicates the group, w is the weight assigned to the group 
(wA = wB = 0.45, wC = 0.1), c is a correction factor that is needed for tables with less than 
10, 100 or 200 rows for the three respective groups (cA = NA/10, cB = (NB-10)/90, and cC = 
[min(NC,200)-100]/100; N is the number of rows in the particular group), and s is the SW 
score. The last term in Equation 1 indicates the sum of scores of matching genes 
annotated with the query KO as normalized by the total score from every KO in the group. 
Then, scores from BH and RBH tables were further weighed to get the final myKEGG 
score for the query KO according to Equation 2. In addition, a normalized myKEGG 
score was calculated, where the highest scoring KO for a given gene got a score of 1.0 
(Table 1). 
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myTree 
As a final aid for annotation decisions, we created a phylogenetic tree for each gene 
based on protein sequences. Briefly, for a query gene that is to be annotated, we 
determined best matches in four other well-studied organisms (H. sapiens, D. 
melanogaster, A. thaliana, and S. cerevisiae) and best matches (with a KO annotation in 
KEGG) in any organism belonging to ten selected taxanomic groups (Bacteria, Archaea, 
Protists, Fungi, Plants, Invertebrates, Nematodes, Arthropods, Vertebrates, and 
Mammals). When best matches from the four species and from the taxonomic groups 
were the same due to taxonomic overlaps, we obtained the next best match in the 
taxonomic group to add to the tree. If the best match in any case was not a RBH, then the 
best reciprocal hit in C. elegans gene was also included in the tree. In addition, up to 5 
potential paralogs of the query gene in C. elegans genome (top 5 matches) were used 
even if not captured as a reciprocal hit. In all matches, an SW score threshold of 200 was 
required, and when a match was not found, that organism, taxonomic group, or candidate 
paralog was excluded from the tree. The protein sequences of all available matches were 
downloaded from KEGG and aligned by MUSCLE (Edgar, 2004). MUSCLE was also 
used to create phylogenetic trees with the “maketree” function and resulting PHY file 
was converted to an SVG image using custom PYTHON scripts. An example is provided 
in Figure 1B.  

While visual inspection of phylogenetic trees was very important for annotation 
decisions, conversion of these evaluations into an algorithm was necessary for SACURE. 
Thus we obtained two scores that quantitatively defined the information found in these 
trees. First was a cluster score to define the relatedness of the query gene to KOs in the 
same lineage in the tree. Proportion of each KO assigned to genes sharing the same 
lineage with the query gene (i.e., branching from the same node plus up to two prior 
nodes on the tree) was calculated. Starting from the lowest node, for every node up to the 
third node in a row that covers both the query gene and the evaluated KO, proportion of 
the KO was multiplied by 1/3 and added to a score sum for the KO. Thus, only KOs that 
shared the lowest node with the query gene could get a score different than 0. 
Unannotated genes (i.e., genes without a KO association) were included in the calculation 
of these proportions. The cluster score gets a maximum value of 1 (Table 1) (i.e., when 
all three lowest nodes covering the query gene are dominated by one KO). The other tree 
score was based on the entire tree, where the cumulative similarity score of each KO in 
the tree (i.e., the sum of reciprocals of distance from query gene for every gene associated 
with that KO) was calculated and the resulting values were normalized by the average of 
two highest scoring KOs (regular normalization by maximum score was avoided to 
reward the highest score only to KOs that totally dominated the trees). Unknown KOs for 
unannotated genes were all included in the scoring as a single KO. This method yielded a 
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cluster score between 0 and 2 (Table 1). See Figure 1B for an example for tree and 
cluster scores. 

Systematic Annotation by Manual Curation and Regression (SACURE) 
We annotated metabolic genes in C. elegans by manual curation reinforced by an 
algorithm that verified and rationalized our decision-making process based on the 
variables and scores described above. First, a set of candidate metabolic genes was 
determined based on association with a metabolic KO that required a minimum 
myKEGG score of 0.0004 and additional evidence in at least in one of the four external 
databases used (KEGG, WormBase, UniProt, and KOG). A metabolic KO was defined as 
any KO that is linked to an enzyme or a reaction in KEGG database. The small threshold 
for myKEGG was set to minimize the number of false negatives so that manual curation 
was feasible. Only two metabolic genes annotated by KEGG were missed at this 
threshold; higher thresholds increased this number and were therefore avoided. The 
resulting set had 2,850 candidate protein sequences with evidence for association with at 
least one enzyme or reaction in KEGG database. 

Potential gene-KO associations were manually inspected based on the evidence from 
different resources. After an initial evaluation, we started training a logistic regression 
function, which determined the weights of each annotation resource in the decision-
making process. The input of the function was scores from all resources (Table 1) for all 
possible gene-KO associations, and the output was a probability value (P) of accepting an 
association, with a probability greater than 0.5 indicating an acceptance and one lower 
than this value indicating a rejection (see Figure 2A for the final function). This function 
was best fitted to the manual decisions using the mnrfit routine of MATLAB (version 
R2014a) (The MathWorks, Inc., Natick, MA). We then checked how the output of this 
function fitted to the manual decisions. Misfits resulted in one of two actions before the 
next step: (i) some decisions were wrong or inconsistent with the rest of the decisions 
because of human errors and these were corrected; or (ii) some decisions could not be 
captured by the logistic function because evidence in some of the resources was not 
adequately interpretable by our scoring algorithms (most frequently, tree scores were 
underestimated when a tree was dominated by C. elegans paralogs [Figure 1C]) and 
these decisions were separated from the evaluation list as irregulars (see below). Then, 
logistic function fitting was repeated with the remaining regular decisions, and this 
process was iteratively continued, until 2,353 genes remained in the regular set with 
1,704 manually accepted gene-KO associations in 1,704 genes, 13,763 manually rejected 
associations in all genes, and only 11 misfits to algorithmic decisions. The weights of the 
final logistic function for each resource are shown in Table 1.  

We used the trained logistic function to divide our annotation decisions into two 
categories: regular (with a defined formula based on the calculated weights) and irregular 
(based on an exception that overrules this formula), thereby rationalizing all of our 
decisions with some defined basis. In addition, we divided our decisions into three 
confidence levels based on the p-values from logistic function and whether the 
association was grouped as regular or irregular: (1) low confidence, regular with 0.5 < P 
≤ 0.9 or irregular; (2) medium confidence, regular with 0.9 < P ≤ 0.99; and (3) high 
confidence, regular with 0.99 < P.    
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To establish the final set of annotated metabolic genes and reactions for metabolic 
network reconstruction, we first modified the definition of metabolic KOs and enzymes. 
We removed 37 enzymes, as these were associated with functions such as protein kinases 
or ubiquitin modifications, and were therefore not relevant to the design of our metabolic 
model. We also added 91 new KOs to the list of metabolic orthology groups as their 
connections to KEGG enzymes or reactions were not clear in the database links and were 
to be established manually (e.g., K02272 is a KO associated with cytochrome c oxidase 
subunit 7c, but the association with the corresponding enzyme EC 1.9.3.1 was not 
available in KEGG). Gene associations with these additional KOs were evaluated with 
the trained logistic function followed by manual curation, adding 109 genes to the regular 
set. After all these changes, the number of accepted gene-KO associations was 1,182 in 
our regular set and 180 in our irregular set. Out of 180 irregular decisions, 32 were 
changed to regular as the final logistic function actually captured these decisions (this 
was not the case initially as they were not captured by earlier versions of the model 
during training, and were therefore categorized as irregular). An additional set of 9 gene-
KO associations were found among the set of genes with a high myKEGG score but no 
evidence from databases (ignored during manual evaluations) with the help of the trained 
logistic function. These additions were manually confirmed as well. Finally, for a set of 
64 genes, we indirectly established connections to metabolic reactions although these 
genes could not be associated with any KOs directly. Specifically, we incorporated genes 
for which all candidate KOs (or enzymes) overlapped in a set of reactions. On the overall, 
we obtained 1,435 SACURE-annotated genes distributed into different confidence 
categories as shown in Figure 2B. Some of the reactions in Figure S2B were generic 
reactions and some were repeated (i.e. two reaction IDs in KEGG indicated the same 
biochemical reaction). We removed most generic reactions (those with specific versions 
available in the database) and kept only one of each of the repeated reaction pairs in the 
rest of the analysis, which resulted in a reduction of 81 reactions from the annotation set. 

Validation of SACURE 
To check if the trained logistic function robustly captured our regular decisions, we 
performed leave-one-out cross validation. Testing one gene-KO decision at a time in 
3,408 cases (all 1,704 accepted associations and as many rejected associations that were 
randomly picked), we first removed a decision, then refitted the function to the remaining 
decisions, predicted the decision that was left out, and compared this prediction to the 
original decision. Out of 3,408 tests, and excluding the 11 misfits, only 4 decisions 
originally picked by the logistic function became wrong during cross validation (0.1% 
error rate). This cross validation test proves that the trained logistic function (Figure 2A) 
captures our regular manual decisions.  

We further evaluated the predictive power of the trained and validated logistic 
function in retrospect, by comparing algorithmic decisions with conclusions from 
SACURE. In total, SACURE pipeline yielded curated decisions for 2,972 genes 
including both core metabolic genes and others associated with signaling reactions. 
Logistic function decisions for 174 (5.9%) of these 2,972 genes resulted in false 
negatives (algorithmic null association was manually overruled by a positive gene-KO 
association) and 28 (0.9%) false positives (algorithmic decision was manually rejected). 
The low disagreement rate (6.8%) between manual and algorithmic decisions indicates 
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that vast majority of the annotations made in this study are based on an annotation 
formula, as represented by the weights of the logistic function (Table 1).  

During the reconstruction process, 185 genes were re-annotated to complement gene-
reaction associations in a network context (see below). Among these, 147 annotations 
were missed by SACURE, which makes about 12% of the model genes and 7% of all 
curated genes in this study. Although more annotations are certainly needed for a more 
complete picture of C. elegans metabolism, the fact that 88% of genes that make a 
mathematically functional global-scale network model came from this annotation 
pipeline also validates the approach taken in this study.  

Availability and potential applications of SACURE 
The annotation database obtained for the C. elegans genome is available at WormFlux, 
with 3,018 curated decisions (including those mentioned above plus curations made 
during the reconstruction process) and 17,326 non-curated decisions, the latter set 
showing purely algorithmic results for mostly non-metabolic genes. The low predictive 
error rate mentioned above may or may not be valid for the non-metabolic gene set, as 
the training of the decision function was carried out by metabolic genes, so non-curated 
decisions should be used with care. The approach developed in this study may also be 
useful for annotation of metabolic genes in other genomes found in KEGG, by replacing 
WormBase descriptions with other organism databases, or by using a different set of 
descriptive annotation resources (note that one of the current resources, KOG, is limited 
to only 6 other organisms). Either way, the logistic function would need to be retrained 
by manual curation as the current rules (weights) cannot be generalized to other genomes 
(e.g., due to differential levels of completion in KEGG database, different annotation 
sources, etc.). The computational tools used in SACURE (myKEGG, myTree, and word-
matching algorithms) are not standalone applications as they are dependent on KEGG for 
SW tables (myKEGG and myTree), MUSCLE for sequence alignment (myTree), and text 
input from descriptive databases for enzyme name matching (word-matching algorithms). 
Our customized codes used in this pipeline are available for potential users upon request.  

2. Reconstruction of a Template C. elegans Metabolic Network: Biomass, Transport, 
and Demand/Sink Reactions 

Degradation of bacterial biomass 
The degradation of bacterial biomass is represented by Degradation-type reactions in 
with DGR header (29 reactions in total). All products of degradation are made exportable, 
which means that the model is not constrained to using a constant proportion of different 
materials and can waste food in excess. Importantly, degradation was established such 
that 1 unit of bacterial intake (reaction EXC0001) amounts to 1 g of material in standard 
flux units (mmoles/g dW/h, where dW denotes the dry weight of C. elegans used in flux 
normalization).   

The coefficients in the degradation reactions are a function of the composition and 
formulation of different components of the bacterial biomass. This biomass composition 
was based on that of E. coli in (Neidhardt et al., 1990) except for phospholipids and the 
soluble component. Phospholipid composition was adjusted to the OP50 strain (standard 
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diet of C. elegans) according to (Satouchi et al., 1993). Only essential metabolites 
(required by biomass assembly or demand reactions) were included in the soluble 
component. The fraction of most of these compounds in the overall biomass was based 
on E. coli metabolome database (ECMDB) (Guo et al., 2013) except for vitamin B6 
components (approximated based on (Dempsey, 1971)), iron-related compounds 
(approximated based on (Matzanke et al., 1989)), and coenzyme A, which was set 
arbitrarily since the concentration given in ECMDB exceeded the limit for the proportion 
of the entire soluble component in bacterial biomass.  

Assembly of C. elegans biomass 
The assembly of C. elegans biomass was represented by Biomass-type reactions with the 
BIO header (19 reactions in total). Four different biomass reactions (biomass reaction is 
defined as the final step of an assembly) were used to represent four different forms of 
animal biomass mainly depending on the absence/presence of DNA (to address cell 
division) and storage compounds (triacylglycerides [TAG], glycogen, and trehalose). 
These are BIO0100 (no DNA, with storage), BIO0101 (no DNA, no storage), BIO0102 
(with both DNA and storage), and BIO0103 (with DNA, no storage). In addition, 
collagen proteins, major components of C. elegans cuticle, were not included in BIO0102. 
Thus, BIO0102 was designed to represent the biomass assembly in germline to make 
embryos, whilst BIO0100 and BIO0101 represented body mass with and without storage, 
and BIO0103 represented progeny assembly inside the eggs. The metabolite coefficients 
in these reactions as well as other assembly reactions are a function of the composition 
and formulation of different components of the C. elegans biomass. The fraction of 
macromolecules (proteins, DNA, RNA, TAG, etc.) was first determined for the complete 
biomass (with both DNA and storage), and then, these fractions were recalculated by 
making one or both of these two components zero and increasing the rest proportionally.  

Since the biomass composition of C. elegans has not been studied systematically, we 
collected information on different biomass components from various studies and 
developed an approximate composition. This constant composition was used in all 
analyses as a first approximation, although many components of biomass may be varied 
in different stages of life. Overall fraction of total lipids was based on (Hutzell and 
Krusberg, 1982), whilst the ratio of phospholipids to TAG was approximated as 1 based 
on (Brock et al., 2007; Brooks et al., 2009). Glycogen content was obtained from (Cooper 
and Vangundy, 1970). Trehalose fraction was approximated as 1% based on (Miersch 
and Doring, 2012). Glycans of C. elegans are represented with N-linked glycans and 
chitin in the model. While no quantitative information was found for these components, 
O-linked glycans are reported to make approximately 1% of biomass in (Hanover et al., 
2005). We assumed a fraction of 2% for total glycans, equally divided between the 
representative forms chitin and N-linked glycans. For other variables that were not 
available in the literature, we used the biomass composition of yeast based on (Forster et 
al., 2003) as a first approximation. These variables included the amino acid composition 
of proteins, the overall fractions of DNA, RNA, and ash (i.e., the proportion that was not 
represented by any metabolite in the biomass reaction), and the relative ratio of the four 
bases in RNA. The proportions of the four bases in DNA were determined based on the 
GC% of C. elegans genome, approximated as 35%. The remaining portion of biomass 
after all of the above estimations was assumed to be made of proteins. Protein mass was 
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divided into mitochondrial, cytosolic and collagen components which were assumed to 
make 20%, 70%, and 10% of total protein, respectively. Inclusion of the mitochondrial 
component was necessary to link the separate mitochondrial protein biosynthesis pathway 
to the biomass assembly. The collagen component was included since collagens form a 
significant proportion of the cuticle and have a specific, predictable amino acid 
composition, which was based on 21 major collagens according to (Page and Johnstone, 
2007). 

The lipid composition of C. elegans biomass was further detailed using relatively 
precise reports from the literature. The macro composition of phospholipids 
(phosphatidylcholine, sphingomyelin, ether-lipids etc.) was based on (Satouchi et al., 
1993). Fatty acid compositions in phospholipids and TAG were based on (Brock et al., 
2007) with two exceptions. First fatty acids with chain length greater than 20 carbons, 
which were rarely detectable in analytical studies (Reis et al., 2011), were represented in 
the model by a 24-carbon chain molecule assumed to make only 1% of total fatty acids. 
Second, the mass ratio of cyclic fatty acid cis-11,12-methyleneoctadecanoic acid in TAG 
was reduced from 0.17 to a symbolic 0.0001, as the only source for cyclic fatty acids is 
the bacterial diet and the original ratio made this compound limiting for growth based on 
stored lipids. This limitation was considered as non-realistic since animals can adjust the 
composition of TAG as evident from the variation of composition in different studies 
(Brock et al., 2007; Perez and Van Gilst, 2008).   

The energetic cost of polymerization reactions that form proteins, DNA, and RNA 
was determined according to (Neidhardt et al., 1990) and included in the coefficients of 
ATP or GTP consumed in these reactions. 

Transport 
Since the identity of metabolite transporters is generally not known in C. elegans, we 
derived most (80%) of the transport reactions from yeast (Forster et al., 2003) and human 
(Duarte et al., 2007) metabolic models in BiGG (Schellenberger et al., 2010). First a 
collection of all transport reactions in these two models was formed. Then compounds in 
the C elegans model were cross-referenced with those in BiGG. This process was 
straightforward for most compounds as we used the BiGG nomenclature in the naming of 
our compounds. Other compounds in C. elegans were matched with their counterparts in 
BiGG if available (e.g., dedolp [dehydrodolichol diphosphate] in the C. elegans model 
matches dedolp_L and dedolp_U in the human model, which are the liver and uterine 
homologs of this metabolite, respectively). Using the transport collection and compound 
matches, the corresponding transport reactions were determined for every compound in 
the C. elegans model. All organelles in BiGG transport reactions, except for 
mitochondria, were converted to cytosol, since organelle compartmentalization is not 
made in iCEL1273 except for mitochondria. The simplest form of available transport was 
incorporated for each compound (e.g., reversible ammonium transport between cells and 
extracellular space is coupled with sodium, calcium, chloride, or proton transport in the 
human model, but these reactions were rejected and a simpler reaction that reversibly 
transports just ammonium was incorporated from the yeast model). Importantly, protons 
involved in all incorporated reactions were eliminated, as the inclusion of protons in 
mitochondrial transport reactions resulted in an artificially large ATP synthesis ability. 
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This was caused by thermodynamically infeasible loops that involved the transport of 
interconvertible metabolites and provided a net flux of protons out of mitochondria. The 
transport of protons to and from mitochondria is limited in iCEL1273 to the electron 
transport chain and ATP synthase to allow stoichiometric calculations of ATP generation. 
Potential contributions from other transport reactions cannot be described accurately and 
this uncertainty is currently considered as part of maintenance costs (see below in section 
6). All BiGG-related transport reactions are indicated in reaction comments.  

For a subset of metabolites, 99 transport reactions were added but not automatically 
incorporated from BiGG. These included known transporters (e.g., HGR-1 for heme 
transport), unknown ones that carry out transport reactions predicted to be present with 
high confidence (e.g., N-acetylglucosamine uptake is inserted as a transport reaction 
since this compound is part of the axenic medium for C. elegans (Lu and Goetsch, 1993)), 
and gap fillers.  

All compounds that are localized to extracellular space (i.e., involved in at least one 
transport reaction between cytosol and extracellular space compartments) are drained or 
imported by exchange reactions, to allow mass balance during FBA. Exchange reactions 
are used for controlling the input and output of the model by flux constraints to define the 
conditions tested (see below). These reactions are indicated as exchange-type with EX 
header.  

Demand/sink reactions 
Endpoint metabolites that are biologically functional without further conversion by 
metabolic reactions are drained by demand reactions to allow mass balance during their 
production. These metabolites include signaling molecules (e.g., phosphoinositols), 
vitamins (e.g., cobalamin [vitamin B12]), cofactors (e.g., coenzyme A), modified proteins 
(e.g., methylated histones), and others (e.g., glutaurine). Reactions that drain certain 
endpoint metabolites are made reversible since these metabolites can also be degraded 
when available. Reversible reactions that both provide and consume endpoint metabolites 
are called sink reactions (Thiele and Palsson, 2010). Examples include sink reactions for 
storage compounds (e.g., trehalose) and other metabolites that may be degraded and used 
in different forms if available (e.g., methylated histones can be demethylated). The 
difference between demand/sink reactions and exchange reactions is that the endpoint 
compounds do not need to be transported, as they are used, stored or consumed where 
they are made available. As with exchange reactions, demand and sink reactions are used 
to control the input and output of the model for specific tests (see below). Demand and 
sink reactions are indicated as Demand-type and Sink-type with headers DMN and SNK.  

Reaction reversibility and stoichiometry 
To decide whether a reaction is reversible or irreversible, we used the information about 
the direction of the reaction in BiGG, MetaCyc (Caspi et al., 2014), SEED (Aziz et al., 
2008; Henry et al., 2010), and Brenda (Schomburg et al., 2004). Three cases were 
possible regarding reaction directionality: reversible, irreversible in the assumed forward 
direction, irreversible in the reverse direction to what is assumed. Since databases did not 
always agree on reaction directionality, we calculated a cumulative score for each case of 
directionality for a reaction by adding individual scores from the different resources. The 
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individual scores were 1 or 0 for reports in SEED and MetaCyc since for a given reaction 
there was at most one matching reaction in each of these databases. For BiGG and 
Brenda, the directionality scores were defined as the proportion of reports supporting 
each case, since there were typically multiple matches. In addition to direct matches in 
Brenda, which was not frequently available, overall reversibility score for the enzyme 
associated with the reaction was also considered as another Brenda score. These 
individual scores were summed for each case of directionality. If the score of the best 
case was higher than the next by >80%, that case was selected. If not, or if the highest 
score was <0.5 for any case, the reaction was made reversible (i.e., a low overall score 
meant lack of sufficient data for a decision, which lead to an assumption of a reversible 
reaction). Exceptions were made in the decision process in multiple cases such as when 
one database gave more convincing evidence than others (e.g., when multiple 
experimental reports are available in Brenda for the direction of a reaction), when the 
information regarding reversibility was found in literature, or when reversibility could be 
based on similar reactions in the absence of data for the specific reaction in question. All 
reversibility exceptions are indicated in reaction comments.  

Stoichiometry of a reaction was determined according to the following data in a 
priority order (i.e., the first method that provided an answer determined the stoichimetry): 
(1) stoichiometry of matching reactions in BiGG, (2) stoichiometry of the matching 
reaction in MetaCyc, (3) stoichiometry reported in literature. If none of these sources had 
the information sought, we determined stoichiometry based on mass and charge balance. 
To determine molar weight for mass balance, compound formulas were obtained from 
KEGG, MetaCyc, or BiGG. For charge balance, compound charges were obtained from 
BiGG if available, or were based on other methods as indicated in metabolite comments. 
Exceptional cases in stoichiometric decisions were rare and are also indicated in 
comments.   

3. PRIME Model: Systematic Localization of C. elegans Metabolic Reactions  
Reactions were divided into three compartments: mitochondria, cytosol, and extra-
cellular space. The localization of biomass, demand, transport and exchange reactions 
was straightforward based on their definition (e.g., a demand reaction is localized to the 
compartment where the drained compound is present). The locations of the other 
reactions, which are the core set of reactions in the model and are designated as “regular” 
category (reactions with header R), were systematically determined based on seven 
resources and FBA (Figure 3A).We first used our procedure to decide whether each 
reaction should be localized to mitochondria or not. Non-mitochondrial reactions were 
then further localized to extracellular space or cytosol manually. Since only three non-
mitochondrial reactions were localized to extracellular space, the main task of this 
procedure was to decide between mitochondrial and cytosolic localization for every 
regular reaction. 

The resources used in systematic localization provided evidence at different levels 
(Figure 3A). Four of the localization resources predicted the targeting of proteins 
encoded by the genes in reaction GPR to mitochondria, cytosol, or other organelle. 
Localization to other organelles was equivalent to localization to cytosol in the model. 
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Brenda was used as a resource to collect non-specific information regarding the 
localization of the general enzyme associated with the reaction (e.g., EC 2.4.2.30). BiGG 
models and FBA provided evidence for the localization of the reaction itself. Each 
resource was used to obtain a cytosolic and a mitochondrial score from 0 to 1. These 
scores were then multiplied by weights (depending on the resource, Figure 3A) and 
summed to get a final score on each compartment. The cumulative scores for each 
compartment were used to decide on reaction localization (see below). Data was derived 
from these resources as follows: 

Mitoprot: This tool was used to calculate the probability (Pm) that a protein is targeted 
to mitochondria based on the N-terminal sequence (Claros and Vincens, 1996). While the 
Pm value defined the mitochondrial score, the corresponding cytosolic score was 1-Pm. 
Protein sequences were obtained from WormBase. When multiple isoforms were 
available for the product of the same gene, scores were calculated for each isoform, and 
the maximum scores were used in each compartment. Since Mitoprot provided a direct 
prediction based on specific protein sequence, we valued this resource with a relatively 
high weight of 2 for scores <0.95, and an even larger weight of 4 for scores ≥ 0.95 
(indicative of 95% confidence).  

Mitominer: This database provides experimental and theoretical evidence for 
mitochondrial localization of genes in twelve eukaryotic species including five metazoans. 
Since C. elegans is not part of this database, we scored genes in our reconstruction based 
on their potential orthologs in Mitominer. An ortholog was defined as a reciprocal best 
hit in KEGG SW score tables (see above, section 1). The orthologs were cross-referenced 
with gene names in a Mitominer reference table that lists proteins with evidence for 
mitochondrial localization, mostly based on fluorescence assays and proteomics analyses. 
The Mitominer score for cytosol (Scyt) was then based on the ratio of orthologs (in the 
twelve Mitominer organisms) that had no hits in the evidence table. Mitochondrial score 
(Smit) was calculated as a function of two variables: (1) the ratio of hits in the Mitominer 
database (1- Scyt) and (2) the evidence available for the ortholog with the strongest 
evidence of mitochondrial targeting. The equation for this score is Smit = 0.5E + 0.5(1- 
Scyt), where E is the highest evidence score in all orthologs. The evidence score was 
calculated as E = 0.8exp + 0.2thr, where exp stands for the strength of the experimental 
and thr for that of the theoretical evidence provided. To define the strength of the 
evidence score, we differentially weighed fluorescence-based and mass-spec-based 
(proteomics) reports from tests in the organism carrying the orthologous protein. If there 
were more than 1 fluorescence-based reports, or more than 7 mass-spec reports, exp was 
given a value of 1. If only one of these two types of evidence was available with less than 
or equal to these thresholds (1 and 7, respectively), then exp = 0.5. If both types of 
evidence was available in any number of reports, exp was given a value of 1. The strength 
of the theoretical score (thr) was defined as the ratio of theoretical predictors that 
predicted mitochondrial targeting of the orthologous protein sequence. The total number 
of predictors was 5. The overall Mitominer score was given a relative weight of 1.5 in the 
total localization score (Figure 3A) as it was not directly based on C. elegans genes, but 
it integrated experimental information about homologous genes from multiple other 
eukaryotes.  
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UniProt and Organelle Database: Available information on the subcellular 
localization C. elegans proteins was downloaded from UniProt (Bateman et al., 2015) 
and Organelle Database (Wiwatwattana and Kumar, 2005). Mitochondrial and non-
mitochondrial scores were defined as 0 or 1 depending on the absence or presence of 
each compartment in the reported information (all non-mitochondrial localizations were 
considered as the cytosolic compartment). These scores were given a low weight (Figure 
3A) since there was no information for vast majority of proteins in both databases, and 
since the existing information was mainly based on theoretical predictions (not related to 
Mitoprot). 

Brenda: Protein localization information was collected from Brenda for all enzymes 
in the model (only eukaryotic reports were evaluated). For each enzyme, the proportion 
of the number of reports that indicate enzyme localization to mitochondria determined the 
mitochondrial score and the proportion of the rest of the localization reports determined 
the cytosolic score. However, if one of the reports was directly based on C. elegans 
proteins, the score was made 1.0 for the corresponding location. The weight of Brenda 
score was set at 1 (Figure 3A) as this analysis was based on indirect associations based 
on the generic enzyme, without assessment of homology.  

BiGG: This database includes reactions from the metabolic network models of two 
eukaryotes, human and yeast, for which subcellular localizations in the corresponding 
model are indicated. Each reaction in the C. elegans model was first searched in these 
models. If no matches were found, both compartments (mitochondrial or non-
mitochondrial) were given 0 score. If matches were found, the score of a compartment 
was increased by 0.5 for the occurrence of the reaction in that compartment in each 
organism. For example, if the mitochondrial version of a reaction was found in the yeast 
network but not in the human network, the mitochondrial score would be 0.5. If the 
reaction was found in the cytosol of the yeast network and the peroxisome of the human 
network, the non-mitochondrial score would be 1.0. BiGG scores were given a medium 
weight (Figure 3A) since these eukaryotic models reflect systematic reconstructions in 
two well studied eukaryotes, although this information is also not direct.  

FBA: The localization of a reaction to mitochondria or cytosol was also scored based 
on the capacity of the reaction to carry flux in either compartment. Three tests were 
performed for each reaction in the model, by localizing the reaction to mitochondria, 
cytosol, and both compartments. In each test, maximum flux that the reaction could take 
was calculated as described above (see section 2). If this flux was not zero in a 
compartment in any one of these tests, that compartment was scored 1. The weight of this 
score was 2 (Figure 3A), reflecting the fact that flux carrying capacity provides a direct 
prediction for the correct localization in modeling terms. In addition, for each of the three 
tests above, maximum biomass production and maximum energy generation were 
calculated, by using the biomass drain (BIO0010) and ATP-maintenance (RCC0005) 
reactions as the maximized objective, respectively. If the localization of the reaction to a 
particular compartment increased one or both of these values compared to otherwise, then 
the score of that compartment was changed to 4 as a bonus (Figure 3A). If localization to 
both compartments was necessary for the increase in biomass or energy production, then 
both compartments received this bonus score. 
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Reaction localization was based on cumulative evidence from the resources defined 
above. An overall score was calculated for mitochondrial and non-mitochondrial 
compartmentalization of each reaction by summing the scores multiplied by the 
corresponding weights (Figure 3A). For reactions that were associated with multiple 
genes or enzymes, the maximum gene- and enzyme-level scores were used for each 
compartment. The range of the overall score was from 0 (no evidence for the 
compartment scored or no data) to 14 (consistently perfect scores for the compartment). 
To algorithmically decide the location of reactions from overall scores, two thresholds 
were determined, which we designate as τ1 and τ 2. A reaction was localized to a 
compartment either if the cumulative score passed τ 1 for that compartment or if the score 
of that compartment was above the score of the other compartment by more than τ2. If the 
two compartment scores were within τ 2 of each other, the reaction was localized to both. 
These thresholds were set at optimal values of τ 1 = 6.2 and τ 2 = 1.2, which maximized 
the agreement between the localizations in the template model and algorithmic decisions. 
Since the template model was manually reconstructed, reaction localization was based 
mainly on pathways, gap-filling criteria, and a manual evaluation of evidence in the 
above defined resources. The disagreements between the computational decisions and 
manual localizations were then resolved by either re-localizing reactions or setting 
exceptions that overruled these scores. This procedure was carried out iteratively, since 
FBA-based scores changed when reaction localizations were changed. When no more 
changes were observed in computational decisions, all reactions were localized to 
mitochondrial and non-mitochondrial compartments on a rational basis, either as 
algorithmically explained by the cumulative scores or as decided by an exception rule. 
All exceptions for protein localization are explained in reaction comments.  

Finally, reactions that were associated with multiple genes and localized to both 
cytosol and mitochondria were further examined to divide the GPR into the two 
compartments. The genes (proteins) associated with such reactions were localized based 
on overall scores from the four resources yielding evidence at the gene level (Figure 3A). 
Scores were manually evaluated, and for each gene, the compartment that was clearly 
ahead in cumulative score was selected. If scores were close or if both were low, the gene 
(protein) was localized to both compartments. Exceptional cases are indicated in reaction 
comments. With the reaction and protein re-localizations, the reconstruction of the prime 
model was completed.  

Validation of subcellular localization in the Prime model 
To validate reaction and protein localization in the prime model, experimental protein 
localization data was downloaded from WormBase. Specifically, IDA (inferred from 
direct assay) reports for cellular component in the gene ontology section were used. IDA 
protein locations were available for proteins encoded by 132 genes in the prime model. 
Locations of these genes in the prime model were determined based on the locations of 
the reactions they are associated with. 

We first checked whether the experimental information was a part of the decision-
making in some of these genes, mainly since UniProt, Organelle Database, and Brenda 
reports may cover available experimental data. For only one gene (aco-1) did this 
information affect both the score from either of these resources and the algorithmic 
conclusion based on total score. Therefore, this gene was excluded from the validation 
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analysis. In addition, the predictions for the location of two of the remaining 131 genes 
were correct, but not used in the model due to technical restrictions in the model design. 
One of these genes is vha-8, which encodes a vacuolar ATPase, but is localized to 
mitochondria as there is only one ATPase in the model. The other one is acs-2, which 
encodes an acyl coA synthetase, an important component of phospholipids biosynthesis. 
However, we avoided the inclusion of separate, mitochondrial pathways for the 
biosynthesis of mitochondrial phospholipids, and lumped all related genes in cytosolic 
pathways to make a cytosolic phospholipid that represented all phospholipids in the 
biomass. Both vha-8 and acs-2 were excluded from validation analysis.  

The results of validation with the remaining 129 genes are shown in Figure 3B in 
comparison with the performance of our gene-based predictors. While Mitoprot showed 
an excellent performance by itself, both error rate and nonspecific matching were tripled 
with this tool compared to the metabolic model. The Mitominer-based predictor 
developed in this study was the next best and had a reasonable error rate of about 15% 
despite its indirect capture of evidence based on gene orthology. UniProt and Organelle 
Database clearly had poor coverage compared to other tools, although error rates were 
low or moderate. 

4. Completion of Reconstruction by Semi-Automated Expansion of the Prime Model 
To explore the possibility of connecting the rest of the SACURE-annotated reactions 
(704 reactions that were not incorporated during pathway-by-pathway manual 
reconstruction; hereafter referred to as the query set) to the prime model, we used a semi-
automated reconstruction pipeline. This procedure had the following steps: 

1) Reversibility and localization of the reactions in the query set were determined 
based on multiple resources as explained above (sections 3 and 4, respectively). 
As an exception, experimental data in WormBase (section 4) was directly 
incorporated for these reactions when available, overruling other evidence.   

2) Prime model reactions, query set, reactions of uncharacterized enzymes in KEGG, 
spontaneous reactions in KEGG, and BiGG transport reactions (human and yeast 
models; see section 3) were merged to form a unified reaction network.  

3) Reactions that were disconnected in the unified network at both ends were 
eliminated right away, as these reactions would never be useful in our 
connectivity criteria (see below). Then, additional transport reactions were 
incorporated for every compound in the query set that was not transportable by 
BiGG transport reactions. The final network had a total of 8,679 reactions and 
was converted to a mathematical model for FBA. 

4) FBA was combined with mixed integer linear programming (MILP, see section 7 
below) (Shlomi et al., 2008) to maximize the number of query set reactions that 
carried flux while minimizing the number of additional (not BiGG-based) 
transport reactions that carried flux. Reactions that could not carry flux in this step 
were eliminated as they needed more than one transport reaction to be connected 
to the network. It is important to note that the optimization technique used in this 
step mathematically captures all reactions that are connected to the network (i.e., 
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that can carry flux) based on our criteria (i.e., not dependent on a specific 
transport reaction with no other use). This property was verified by test cases. 

5) Further FBA analyses were carried out to determine the dependence of the 
remaining query set reactions (that could carry flux) on reactions other than those 
in the prime model (i.e., a reaction is dependent on another if it cannot carry flux 
when the other reaction is constrained to zero flux). Query set reactions that were 
dependent on additional transport reactions which had no other function (i.e., no 
other query reaction depended on them) were eliminated. Auxiliary reactions 
(reactions of uncharacterized enzymes, spontaneous reactions, all transport 
reactions) that did not have any function (i.e., no query set reactions were 
dependent on them) were also eliminated.   

6) The remaining reactions in the query set (N=233) are connected to the network. 
As a final step, these reactions were manually examined to decide which ones are 
to be incorporated into the model. 

Most of the reactions from step 5 (77%) were rejected during manual curation, since 
they did not add any new function to the model. For instance, R00572 is a KEGG 
reaction for pyruvate kinase (associated with pyk-1 and pyk-2 in SACURE) that uses CTP 
in the conversion of phosphoenolpyruvate to pyruvate. This conversion is represented in 
the model with an ATP-based reaction (RC00200). Since ATP and CTP are 
interconvertible (RC00570), the addition of R00572 does not add any function to the 
model except for artificially increasing the number of reactions. Therefore this reaction, 
as well as three other forms of the same conversion using other nucleoside triphosphates 
(GTP, UTP, ITP), were not incorporated into the model.   
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Figure 1. (A-B) Evaluation of C. elegans gene acy-4 with myKEGG (A) and myTree (B). The final decision 
for this gene is an association with K08045 (adenylate cyclase) at low confidence. (A) Reciprocal best hits 
(RBH) table showing related genes in other organisms in descending order of Smith-Waterman alignment 
scores in KEGG (s). Organism and gene pairs are designated according to KEGG nomenclature. Top 1000 rows 
are truncated at 105 genes due to the minimum threshold of s=200 for a significant match. Accordingly, the 
correction factor ((105-100)/100 = 0.05) makes the contribution of the top 1000 group to overall score 
insignificant. The most likely KO associations are obtained for K08045 and K08046 with myKEGG scores of 
0.59 and 0.28 in the RBH table (Equation 1) and 0.59 and 0.29 overall (Equation 2), respectively. (B) 
Phylogenetic tree shows clustering around K08045, with a cluster score of 0.33 for this KO. Tree scores are 
1.53 and 0.23 for K08045 and K08046, respectively. (C) A myTree example that needed manual curation. C. 
elegans gene ugt-15 was manually associated with K00699 (glucuronosyltransferase). Due to the domination of 
the tree by C. elegans paralogs, myTree scores underestimated the strength of the visible clustering pattern 
(clustering score is 0 and tree score is 0.35 for association with K00699). Tree abbreviations: CEL, C. elegans; 
HAS, H. sapiens; DME, D. melanogaster; ATH, A. thaliana; SCE, S. cerevisiae; BAC, bacteria; ARC, archaea; 
PRO, protists; FUN, fungi; PLA, plants; INV, invertebrates; NEM, nematodes; ART, arthropods; VER, 
vertebrates; MAM, mammals. Parenthetical information indicates genes introduced as best matches (B) or 
reciprocal best hits (R) in other organisms, and introduced as paralogues (P) or reciprocal best match to one of 
the organisms in the tree (B) in C. elegans. Organism abbreviations are from KEGG.   
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Figure 2. (A) The weights of contributing variables in the trained logistic function (on the left, see Table 
1 for the variables; the constant of the logistic function is also shown), and the agreement between this 
function and all SACURE annotations (on the right). Green and red circles indicate accepted and rejected 
gene-KO associations, respectively. Confidence intervals are defined as stated in Supplemental 
Experimental Procedures. Acceptances below a probability of 0.5 and rejections above this value show 
cases where manual decisions overruled the predictions of the logistic function. (B) SACURE-annotated 
genes and reactions according to confidence levels and exception rules including the derivation of gene-
reaction relationships based on overlapping reactions in candidate KOs or enzymes (see Supplemental 
Experimental Procedures). Most genes and reactions were annotated as consistent with the logistic 
regression function (high, medium, and low confidence). For reactions associated with multiple genes, 
highest confidence was used.   
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Figure 3. (A) Resources used for evaluating reaction localization to mitochondria or other compartments. 
Gene, enzyme, and reaction indicate at which level the predictor works. Gene-level predictions evaluate the 
targeting of proteins encoded by the genes in reaction GPR to mitochondria or other compartments. The 
enzyme level predictor evaluates the localization of the general enzyme in GPR in the Brenda database. 
Reaction level predictors localize the reaction. Each predictor gives a score from 0 to 1 for each 
compartment (mitochondrial and non-mitochondrial). These scores are multiplied with the indicated 
weights and summed to obtain a cumulative evidence score, which is then used for decision-making. 
Weights in parentheses indicate a bonus awarded when an exceptional score is achieved (see Supplemental 
Experimental Procedures). (B) Comparison of the accuracy of reaction localization by the prime model (i.e., 
based on the pipeline indicated in section 4) and by individual gene-level predictors. Predictions are tested 
against the experimental validation set. Predictions by gene-level predictors were based on a score 
threshold of 0.5 (out of 1.0) to assign a protein to a particular compartment (mitochondria or other).   
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Table 1. Predictors used for the annotation of metabolic genesa. 

Predictor Input Method Assignment Output Weight 

KEGG KO Direct KO {0,1} 17.3 

Cluster Score Phylogenetic 
tree 

Lineage 
algorithm KO [0,1] 13.6 

Normalized 
myKEGG score SW tables Equation S2, 

normalized KO [0,1] 7.74 

myKEGG score SW tables Equation S2 KO [0,1] 3.44 

KOG  KOG, SW 
tables Indirect EC {0,1} 3.49 

Tree score Phylogenetic 
tree Tree algorithm KO [0,2) 3.42 

WormBase 
description 

Text, protein 
domains Word matching EC [0,1] 2.91 

UniProt 
descriptionb 

Text, protein 
families Word matching EC [0,1] 0.00 

UniProt ECb EC Direct EC {0,1} 0.00 

 

aAbbreviations: EC, Enzyme Commission number, KO, KEGG Orthology; KOG, orthology groups based 
on (Koonin et al., 2004); SW, Smith-Waterman alignment. 
bUniProt scores were rejected by the model as they were associated with small weights and zeroing these 
weights did not change algorithmic decisions. 
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Table 2. Validation of iCEL1273 with observed consumption/production rates. 

 L4 Stage Adult Stage (3 days) 

Constraint 
Observed 
range Model range 

Observed 
range 

Model 
rangea 

Bacterial uptake 
(g dW/g dW/h) 0.02-0.2 0.16-unba 0.02-0.2 0.09-unba 

O2 uptake 
(mmol/g dW/h) 2.4 1.1-5.3 0.49-0.70 0.10-4.2 

CO2 release 
(mmol/g dW/h) 1.7-2.4 0.26-2.6 0.49 0.0-1.8 

Biomass production (1/h) 0.100 0-0.133 0.065 0-0.144 
 

a Unbound since excess bacterial material can be excreted as waste product. 
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